Wetness measurement and droplet transport analysis in actual steam test on a scaled low pressure turbine

Yasuhiro Sasao, Kiyoshi Segawa, Takeshi Kudo, Ryo Takata, Masaki Osako, Satoru Yamamoto

研究成果: Conference contribution

抄録

Understanding the phenomenon and quantitative prediction of wet loss, quantitative prediction of erosion are still challenges in ST development. The aim of the actual steam test reported in this paper was to verify the performance of a newly developed ST. Still a comprehensive understanding of the wetness phenomenon is also a significant issue. Therefore, in connection with the actual steam test, efforts were made to develop a method for analyzing the three-dimensional causes of wetness loss and erosion. As the first report on the wet phenomenon analysis performed in this actual steam test, this paper reports wet measurement results and analysis results. In the actual steam testing of a 0.33 scaled steam turbine, wetness measurements were carried out at the third stage (L-1) and the final stage (L-0), and its characteristic wetness distribution was analyzed using our original CFD-code MHPS-NT. This 0.33 scaled steam turbine consists of the final three stages (LP-end) and the inlet steam conditioning stage (total of four stages), and wetness distributions in the blade height-wise were measured using two different wetness probes under several operating conditions. Wetness distribution did not change linearly with changes in ST inlet temperature, but dynamic changes in peak position and shape were observed. From the ST inlet to the exhaust chamber, the generation of fine droplets, the capturing of droplets by the wall surfaces, and the behavior of water films and coarse droplets were comprehensively analyzed using a three-dimensional (3-D) unsteady Eulerian-Lagrangian coupling solver that takes into account non-equilibrium condensation. This CFD code (MHPS-NT) is an improved version of Original-NT developed by Tohoku University. By considering the relative position and structure of the wet probe and blade cascade in CFD, it was found that the wetness is formed remarkable circumferential distribution by the moisture separation of the upstream blade rows and end-walls. The circumferential distribution of wetness can be a factor that makes it difficult to grasp the liquid phase distribution inside the steam turbine as an error factor independent of the accuracy of the optical measurement device. Due to the effects of water droplet capturing, the LP-end outlet wetness at the design point may be underestimated by 21% relative. It is also reported that because the wetness has a distribution in the meridian direction, wetness measurements by the wet probe may contain measurement errors independent of the measurement accuracy.

本文言語English
ホスト出版物のタイトルOil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine
出版社American Society of Mechanical Engineers (ASME)
ISBN(電子版)9780791884201
DOI
出版ステータスPublished - 2020
イベントASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020 - Virtual, Online
継続期間: 2020 9 212020 9 25

出版物シリーズ

名前Proceedings of the ASME Turbo Expo
9

Conference

ConferenceASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
CityVirtual, Online
Period20/9/2120/9/25

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Wetness measurement and droplet transport analysis in actual steam test on a scaled low pressure turbine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル