Wear mechanism of current collecting materials due to temperature distribution analysis considering degenerated layer

Chikara Yamashita, Koshi Adachi

研究成果: Article査読

3 被引用数 (Scopus)

抄録

To clarify the wear mechanism of current collecting materials such as a contact wire and a contact strip under electric current condition, it is necessary to clarify temperature distribution around the contact spot. However, the traditional method of estimating the maximum contact temperature such as the φ-θ theory cannot estimate the temperature distribution. In this paper, we newly proposed an electric field analysis model of hard-drawn copper and iron-based sintered alloy considering a degenerated layer such as an oxide film and wear debris. Then, we newly proposed the heat conduction equation applying the Wiedamann-Franz law, and analyzed temperature distribution in electrodes. As a result, we find that the relation between the maximum temperature and the contact voltage even in dissimilar electrodes are based on the φ-θ theory. The temperature distribution in electrode changes depending on whether or not degenerated layers exist, and the maximum temperatures of each electrode are not necessarily the same as those estimated by the φ-θ theory. Finally, we clarify the influence of the degenerated layer on the melting condition of electrodes, and explain the electric wear phenomena observed in the previous wear test.

本文言語English
ページ(範囲)302-309
ページ数8
ジャーナルToraibarojisuto/Journal of Japanese Society of Tribologists
59
5
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 材料力学
  • 機械工学
  • 表面および界面
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Wear mechanism of current collecting materials due to temperature distribution analysis considering degenerated layer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル