Virtual reality based teleoperation which tolerates geometrical modeling errors

Y. Tsumaki, Y. Hoshi, H. Naruse, Masaru Uchiyama

    研究成果: Paper査読

    23 被引用数 (Scopus)

    抄録

    It is well known that teleoperation with time delay causes force feedback control to become unstable. Therefore, bilateral control could not be used in such applications as space teleoperation with time delay. Force feedback information is, however, very important for the operator when performing contact tasks. Recently, virtual reality has been introduced to support force feedback based teleoperation with long time delay. The operator can feel the forces which are generated in the virtual world, even if there is long time delay. Unfortunately, virtual reality based teleoperation is prone to modeling errors between the real world and the virtual world. In this paper we propose such a teleoperation system which combines velocity-level commands with certain slave arm autonomy. The experimental results show that our system is robust with respect to tolerances in the geometrical model, and also, through the feedback loop from the virtual environment the operator can always feel a stable force.

    本文言語English
    ページ1023-1030
    ページ数8
    出版ステータスPublished - 1996 12月 1
    イベントProceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Part 3 (of 3) - Osaka, Jpn
    継続期間: 1996 11月 41996 11月 8

    Other

    OtherProceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Part 3 (of 3)
    CityOsaka, Jpn
    Period96/11/496/11/8

    ASJC Scopus subject areas

    • 制御およびシステム工学
    • ソフトウェア
    • コンピュータ ビジョンおよびパターン認識
    • コンピュータ サイエンスの応用

    フィンガープリント

    「Virtual reality based teleoperation which tolerates geometrical modeling errors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル