Vapor-liquid-solid growth of 4H-SiC single crystal films with extremely low carrier densities in chemical vapor deposition with a Pt-Si alloy flux and X-ray topography analysis of their dislocation propagation behaviors

Naoki Sanoodo, Tomohisa Kato, Yoshiyuki Yonezawa, Kazutoshi Kojima, Yuji Matsumoto

研究成果: Article査読

抄録

A vapor-liquid-solid (VLS) mechanism has been successfully applied to homoepitaxial growth of 4H-SiC films in chemical vapor deposition (CVD), to which the key is the use of a Si-Pt alloy flux in the CVD-VLS process. The n-type residual carrier density in the VLS-grown SiC films could be reduced down to the order of 1015cm−3despite possible concern about impurities working as dopants incorporated into VLS-grown films. The surface morphology essentially exhibited a bunched step-and-terrace structure, as similarly observed in solution-grown SiC crystals. Furthermore, the dislocation propagation behaviors, investigated by X-ray topography analysis, were also rather similar in solution growth processes, but different from those in conventional CVD processes. That is, threading dislocations can be converted to basal plane dislocations in their propagation in the CVD-VLS process, illustrating its potential to effectively reduce the total dislocation density in the resultant SiC thick films.

本文言語English
ページ(範囲)5039-5044
ページ数6
ジャーナルCrystEngComm
23
29
DOI
出版ステータスPublished - 2021 8月 7

ASJC Scopus subject areas

  • 化学 (全般)
  • 材料科学(全般)
  • 凝縮系物理学

フィンガープリント

「Vapor-liquid-solid growth of 4H-SiC single crystal films with extremely low carrier densities in chemical vapor deposition with a Pt-Si alloy flux and X-ray topography analysis of their dislocation propagation behaviors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル