Using self organizing feature maps to acquire knowledge about visitor behavior in a web site

Juan D. Velásquez, Hiroshi Yasuda, Terumasa Aoki, Richard Weber, Eduardo Vera

研究成果: Conference article査読

16 被引用数 (Scopus)

抄録

When a user visits a web site, important information concerning his/her preferences and behavior is stored implicitly in the associated log files. This information can be revealed by using data mining techniques and can be used in order to improve both, content and structure of the respective web site. Prom the set of possible that define the visitor's behavior, two have been selected: the visited pages and the time spent in each one of them. With this information, a new distance was defined and used in a self organizing map which identifies clusters of similar sessions, allowing the analysis of visitors behavior. The proposed methodology has been applied to the log files from a certain web site. The respective results gave very important insights regarding visitors behavior and preferences and prompted the reconfiguration of the web site.

本文言語English
ページ(範囲)951-958
ページ数8
ジャーナルLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
2773 PART 1
DOI
出版ステータスPublished - 2003
イベント7th International Conference, KES 2003 - Oxford, United Kingdom
継続期間: 2003 9 32003 9 5

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Using self organizing feature maps to acquire knowledge about visitor behavior in a web site」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル