Uniform polarimetric matrix rotation theory

Si Wei Chen, Yong Zhen Li, Da Hai Dai, Xue Song Wang, Shun Ping Xiao, Motoyuki Sato

研究成果: Conference contribution

抄録

This paper presents the development of a uniform polarimetric matrix rotation theory in the rotation domain along the radar line of sight for polarimetric SAR (PolSAR) data interpretation. The uniform representation of each coherency matrix element is a sinusoidal function in the rotation domain. A set of oscillation parameters, including oscillation amplitude, oscillation center, angular frequency and initial angle, is proposed to fully characterize the scattering behavior in the rotation domain. A set of rotation angle parameters, including stationary angle, null angle, and minimization/ maximization angles, is derived from the angular frequency and initial angle to indicate the specific states of the rotation property. A look-up table for these parameters is provided and their physical meanings are interpreted. The proposed theory generalizes both the classic polarization orientation (PO) angle originally derived from the covariance matrix in a circular polarization basis and the deorientation theory developed from the minimization of the cross-polarization term. The roll-invariant terms have also been summarized. Finally, multi-frequency AIRSAR and Pi-SAR PolSAR data sets are used to demonstrate the derived parameters.

本文言語English
ホスト出版物のタイトル2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Proceedings
ページ4166-4169
ページ数4
DOI
出版ステータスPublished - 2013
イベント2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013 - Melbourne, VIC, Australia
継続期間: 2013 7 212013 7 26

出版物シリーズ

名前International Geoscience and Remote Sensing Symposium (IGARSS)

Other

Other2013 33rd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013
国/地域Australia
CityMelbourne, VIC
Period13/7/2113/7/26

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 地球惑星科学(全般)

フィンガープリント

「Uniform polarimetric matrix rotation theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル