Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy

Chie Okabe, Takakazu Nakabayashi, Yoshiya Inokuchi, Nobuyuki Nishi, Hiroshi Sekiya

研究成果: Article査読

63 被引用数 (Scopus)

抄録

Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S1(n, π*) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S 1(π, π*) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S1(n, π*) state, occur on a time scale less than a few hundred femtoseconds from the S1(π, π*) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S1(π, π*) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S1(π, π*) to S1(π, π*) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.

本文言語English
ページ(範囲)9436-9442
ページ数7
ジャーナルJournal of Chemical Physics
121
19
DOI
出版ステータスPublished - 2004 11 15
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル