Type II codes over F2 + uF2

Steven T. Dougherty, Philippe Gaborit, Masaaki Harada, Patrick Sole

研究成果: Article査読

159 被引用数 (Scopus)

抄録

The alphabet F2 + uF2 is viewed here as a quotient of the Gaussian integers by the ideal (2). Self-dual F2 + uF2 codes with Lee weights a multiple of 4 are called Type II. They give even uniniodular Gaussian lattices by Construction A, while Type I codes yield uniniodular Gaussian lattices. Construction B makes it possible to realize the Leech lattice as a Gaussian lattice. There is a Gray map which maps Type II codes into Type II binary codes with a fixed point free involution in their automorphism group. Combinatorial constructions use weighing matrices and strongly regular graphs. Gleason-type theorems for the symmetrized weight enumerators of Type II codes are derived. All self-dual codes are classified for length up to 8. The shadow of Type I codes yields bounds on the highest minimum Hamming and Lee weights.

本文言語English
ページ(範囲)32-45
ページ数14
ジャーナルIEEE Transactions on Information Theory
45
1
DOI
出版ステータスPublished - 1999
外部発表はい

ASJC Scopus subject areas

  • 情報システム
  • コンピュータ サイエンスの応用
  • 図書館情報学

フィンガープリント

「Type II codes over F2 + uF2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル