Turing-completeness of asynchronous non-camouflage cellular automata

Tatsuya Yamashita, Teijiro Isokawa, Ferdinand Peper, Ibuki Kawamata, Masami Hagiya

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

Asynchronous Boolean totalistic cellular automata have recently attracted attention as promising models for the implementation of reaction-diffusion systems. It is unknown, however, to what extent they are able to conduct computation. In this paper, we introduce the so-called non-camouflage property, which means that a cell’s update is insensitive to neighboring states that equal its own state. This property is stronger than the Boolean totalistic property, which signifies the existence of states in a cell’s neighborhood, but is not concerned with how many cells are in those states. We argue that the non-camouflage property is extremely useful for the implementation of reaction-diffusion systems, and we construct an asynchronous cellular automaton with this property that is Turing-complete. This indicates the feasibility of computation by reaction-diffusion systems.

本文言語English
ホスト出版物のタイトルCellular Automata and Discrete Complex Systems - 23rd IFIP WG 1.5 International Workshop, AUTOMATA 2017, Proceedings
編集者Alberto Dennunzio, Luca Manzoni, Antonio E. Porreca, Enrico Formenti
出版社Springer Verlag
ページ187-199
ページ数13
ISBN(印刷版)9783319586304
DOI
出版ステータスPublished - 2017
イベント23rd IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2017 - Milan, Italy
継続期間: 2017 6月 72017 6月 9

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10248 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other23rd IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2017
国/地域Italy
CityMilan
Period17/6/717/6/9

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Turing-completeness of asynchronous non-camouflage cellular automata」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル