Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

研究成果: Article査読

19 被引用数 (Scopus)


To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23?0.20 mm, and VOI is 95.6%?0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11?0.08 mm and 96.7% ?0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32?0.77 mm in the CLE and 72.1%?5.5% in the VOI. These results demonstrate the effectiveness of the authors proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the auhors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such

ジャーナルMedical Physics
出版ステータスPublished - 2015 5 1

ASJC Scopus subject areas

  • 生物理学
  • 放射線学、核医学およびイメージング


「Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。