Total colorings of degenerated graphs

Shuji Isobe, Xiao Zhou, Takao Nishizeki

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

A total coloring of a graph G is a coloring of all elements of G, i.e. vertices and edges, in such a way that no two adjacent or incident elements receive the same color. A graph G is s-degenerated for a positive integer s if G can be reduced to a trivial graph by successive removal of vertices with degree ≤ s. We prove that an s-degenerated graph G has a total coloring with δ + 1 colors if the maximum degree δ of G is su-ciently large, say δ ≥ 4s+3. Our proof yields an eficient algorithm to find such a total coloring. We also give a linear-time algorithm to find a total coloring of a graph G with the minimum number of colors if G is a partial k-tree, i.e. the tree-width of G is bounded by a fixed integer k.

本文言語English
ホスト出版物のタイトルAutomata, Languages and Programming - 28th International Colloquium, ICALP 2001, Proceedings
編集者Fernando Orejas, Paul G. Spirakis, Jan van Leeuwen
出版社Springer Verlag
ページ506-517
ページ数12
ISBN(印刷版)3540422870, 9783540422877
DOI
出版ステータスPublished - 2001 1 1
イベント28th International Colloquium on Automata, Languages and Programming, ICALP 2001 - Crete, Greece
継続期間: 2001 7 82001 7 12

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2076 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other28th International Colloquium on Automata, Languages and Programming, ICALP 2001
国/地域Greece
CityCrete
Period01/7/801/7/12

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Total colorings of degenerated graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル