Torsion points on Jacobian varieties via Anderson's p-adic soliton theory

Shinichi Kobayashi, Takao Yamazaki

研究成果: Article査読

抄録

Anderson introduced a p-adic version of soliton theory. He then applied it to the Jacobian variety of a cyclic quotient of a Fermat curve and showed that torsion points of certain prime order lay outside of the theta divisor. In this paper, we evolve his theory further. As an application, we get a stronger result on the intersection of the theta divisor and torsion points on the Jacobian variety for more general curves. New examples are discussed as well. A key new ingredient is a map connecting the p-adic loop group and the formal group.

本文言語English
ページ(範囲)323-352
ページ数30
ジャーナルAsian Journal of Mathematics
20
2
DOI
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Torsion points on Jacobian varieties via Anderson's p-adic soliton theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル