Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus

F. Binda, J. Cao, W. Kai, R. Sugiyama

研究成果: Article査読

5 被引用数 (Scopus)

抄録

The notion of modulus is a striking feature of Rosenlicht–Serre's theory of generalized Jacobian varieties of curves. It was carried over to algebraic cycles on general varieties by Bloch–Esnault, Park, Rülling, Krishna–Levine. Recently, Kerz–Saito introduced a notion of Chow group of 0-cycles with modulus in connection with geometric class field theory with wild ramification for varieties over finite fields. We study the non-homotopy invariant part of the Chow group of 0-cycles with modulus and show their torsion and divisibility properties. Modulus is being brought to sheaf theory by Kahn–Saito–Yamazaki in their attempt to construct a generalization of Voevodsky–Suslin–Friedlander's theory of homotopy invariant presheaves with transfers. We prove parallel results about torsion and divisibility properties for them.

本文言語English
ページ(範囲)437-463
ページ数27
ジャーナルJournal of Algebra
469
DOI
出版ステータスPublished - 2017 1月 1
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル