Tohoku at SemEval-2016 task 6: Feature-based model versus convolutional neural network for stance detection

Yuki Igarashi, Hiroya Komatsu, Sosuke Kobayashi, Naoaki Okazaki, Kentaro Inui

研究成果: Conference contribution

7 引用 (Scopus)

抜粋

In this paper, we compare feature-based and Neural Network-based approaches on the supervised stance classification task for tweets in SemEval-2016 Task 6 Subtask A (Mohammad et al., 2016). In the feature-based approach, we use external resources such as lexicons and crawled texts. The Neural Network based approach employs Convolutional Neural Network (CNN). Our results show that the feature-based model outperformed the CNN model on the test data although the CNN model was better than the feature-based model in the cross validation on the training data.

元の言語English
ホスト出版物のタイトルSemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings
出版者Association for Computational Linguistics (ACL)
ページ401-407
ページ数7
ISBN(電子版)9781941643952
DOI
出版物ステータスPublished - 2016
イベント10th International Workshop on Semantic Evaluation, SemEval 2016 - San Diego, United States
継続期間: 2016 6 162016 6 17

出版物シリーズ

名前SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings

Other

Other10th International Workshop on Semantic Evaluation, SemEval 2016
United States
San Diego
期間16/6/1616/6/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Computer Science Applications

フィンガープリント Tohoku at SemEval-2016 task 6: Feature-based model versus convolutional neural network for stance detection' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Igarashi, Y., Komatsu, H., Kobayashi, S., Okazaki, N., & Inui, K. (2016). Tohoku at SemEval-2016 task 6: Feature-based model versus convolutional neural network for stance detection. : SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings (pp. 401-407). (SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/s16-1065