Threshold circuits detecting global patterns in two-dimensional maps

Kei Uchizawa, Daiki Yashima, Xiao Zhou

研究成果: Article査読

抄録

In this paper, we consider a biologically-inspired Boolean function Pn D that models a simple task of detecting global spatial patterns on a two- dimensional map. We prove that Pn D is computable by a threshold circuit of size (i.e., number of gates) O(√n log n), which is an improvement on the previous upper bound O(n), while our circuit has larger depth O(√n) and total wire length O(n log2 n). Moreover, we demonstrate that the size of our circuit is nearly optimal up to a logarithmic factor: we show that any threshold circuit computing Pn D has size Ω (√ n= log n).

本文言語English
ページ(範囲)115-131
ページ数17
ジャーナルJournal of Graph Algorithms and Applications
20
1
DOI
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)
  • Computer Science Applications
  • Geometry and Topology
  • Computational Theory and Mathematics

フィンガープリント 「Threshold circuits detecting global patterns in two-dimensional maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル