Thermal-Imaging Technologies for Detecting Damage during High-Cycle Fatigue

B. Yang, P. K. Liaw, G. Wang, W. H. Peter, R. A. Buchanan, Y. Yokoyama, J. Y. Huang, R. C. Kuo, J. G. Huang, D. E. Fielden, D. L. Klarstrom

研究成果: Article査読

35 被引用数 (Scopus)

抄録

A high-speed and high-sensitivity thermographic-infrared (IR) imaging system has been used for nondestructive evaluation of specimen-temperature evolutions during high-cycle fatigue experiments. The relationship among the temperature, stress-strain state, and fatigue behavior is discussed. Both thermodynamics and heat-transfer theories are applied to model and quantify the observed temperature variations during fatigue. The predicted and measured temperature evolutions and inelastic strains during fatigue were found to be in good agreement. During fatigue experiments, in-situ observations as well as qualitative and quantitative analyses of Lüders-band evolutions, crack propagation, plastic zones, and final fracture have been performed by thermography, which can open up wide applications of thermography in detecting the in-situ heat-related processes, including mechanical damages and phase transformations, of materials and structural components.

本文言語English
ページ(範囲)15-23
ページ数9
ジャーナルMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
35 A
1
DOI
出版ステータスPublished - 2004 1月

ASJC Scopus subject areas

  • 凝縮系物理学
  • 材料力学
  • 金属および合金

フィンガープリント

「Thermal-Imaging Technologies for Detecting Damage during High-Cycle Fatigue」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル