The two-step nucleation of G-phase in ferrite

Y. Matsukawa, T. Takeuchi, Y. Kakubo, T. Suzudo, H. Watanabe, H. Abe, T. Toyama, Y. Nagai

研究成果: Article査読

67 被引用数 (Scopus)

抄録

By combining atom probe tomography (APT) with transmission electron microscopy (TEM) we have attempted to identify the stage at which solute clusters transform into compounds crystallographically distinct from the matrix, in the precipitation of the G-phase (Ni16Si7Mn6) from ferrite solid solution subjected to isothermal annealing at 673 K. Based on a systematic analysis on the number density, size, composition and structure of solute clusters as a function of annealing time, the nucleation of the G-phase was found to occur via a two-step process: spontaneous growth of solute clusters first, followed by a structural change transforming into the G-phase. Moreover, the structural change was found to occur via another two-step process. There was a time lag between the end of cluster growth to become a critical size (mean diameter: ∼2.6 nm) and the start of the structural change. During the incubation period solute enrichment occurred inside the clusters without further size growth, indicating that the nucleation of the G-phase occurs at the critical size with a critical composition. Judging from the results of APT, TEM and the simulation of electron diffraction patterns, the critical composition was estimated to be Ni16Si3.5(Fe,Cr)3.5Mn6.

本文言語English
ページ(範囲)104-113
ページ数10
ジャーナルActa Materialia
116
DOI
出版ステータスPublished - 2016 9月 1

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • ポリマーおよびプラスチック
  • 金属および合金

フィンガープリント

「The two-step nucleation of G-phase in ferrite」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル