TY - JOUR

T1 - The p-adic Gross-Zagier formula for elliptic curves at supersingular primes

AU - Kobayashi, Shinichi

PY - 2013/3

Y1 - 2013/3

N2 - Let p be a prime number and let E be an elliptic curve defined over ℚ of conductor N. Let K be an imaginary quadratic field with discriminant prime to pN such that all prime factors of N split in K. B. Perrin-Riou established the p-adic Gross-Zagier formula that relates the first derivative of the p-adic L-function of E over K to the p-adic height of the Heegner point for K when E has good ordinary reduction at p. In this article, we prove the p-adic Gross-Zagier formula of E for the cyclotomic ℤp-extension at good supersingular prime p. Our result has an application for the full Birch and Swinnerton-Dyer conjecture. Suppose that the analytic rank of E over ℚ is 1 and assume that the Iwasawa main conjecture is true for all good primes and the p-adic height pairing is not identically equal to zero for all good ordinary primes, then our result implies the full Birch and Swinnerton-Dyer conjecture up to bad primes. In particular, if E has complex multiplication and of analytic rank 1, the full Birch and Swinnerton-Dyer conjecture is true up to a power of bad primes and 2.

AB - Let p be a prime number and let E be an elliptic curve defined over ℚ of conductor N. Let K be an imaginary quadratic field with discriminant prime to pN such that all prime factors of N split in K. B. Perrin-Riou established the p-adic Gross-Zagier formula that relates the first derivative of the p-adic L-function of E over K to the p-adic height of the Heegner point for K when E has good ordinary reduction at p. In this article, we prove the p-adic Gross-Zagier formula of E for the cyclotomic ℤp-extension at good supersingular prime p. Our result has an application for the full Birch and Swinnerton-Dyer conjecture. Suppose that the analytic rank of E over ℚ is 1 and assume that the Iwasawa main conjecture is true for all good primes and the p-adic height pairing is not identically equal to zero for all good ordinary primes, then our result implies the full Birch and Swinnerton-Dyer conjecture up to bad primes. In particular, if E has complex multiplication and of analytic rank 1, the full Birch and Swinnerton-Dyer conjecture is true up to a power of bad primes and 2.

UR - http://www.scopus.com/inward/record.url?scp=84874118682&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874118682&partnerID=8YFLogxK

U2 - 10.1007/s00222-012-0400-9

DO - 10.1007/s00222-012-0400-9

M3 - Article

AN - SCOPUS:84874118682

VL - 191

SP - 527

EP - 629

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

IS - 3

ER -