The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension

Masakazu Kato, Hiroyuki Takamura, Kyouhei Wakasa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The critical constant µ (see (1.1)) of time-decaying damping in the scale-invariant case is recently conjectured. It also has been expected that the lifespan estimate is the same as for the associated semilinear heat equations if the constant is in the “heat-like” domain. In this paper, we point out that this is not true if the total integral of the sum of initial position and speed vanishes. In such a case, we have a new type of the lifespan estimates which is closely related to the non-damped case in shifted space dimensions.

本文言語English
ページ(範囲)659-678
ページ数20
ジャーナルDifferential and Integral Equations
32
11-12
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル