The geometry of loop spaces I: Hs-Riemannian metrics

Yoshiaki Maeda, Steven Rosenberg, Fabián Torres-Ardila

    研究成果: Article査読

    4 被引用数 (Scopus)

    抄録

    A Riemannian metric on a manifold M induces a family of Riemannian metrics on the loop space LM depending on a Sobolev space parameter s. We compute the connection forms of these metrics and the higher symbols of their curvature forms, which take values in pseudodifferential operators (ΨDOs). These calculations are used in the followup paper [10] to construct Chern-Simons classes on TLM which detect nontrivial elements in the diffeomorphism group of certain Sasakian 5-manifolds associated to Kähler surfaces.

    本文言語English
    論文番号1540002
    ジャーナルInternational Journal of Mathematics
    26
    4
    DOI
    出版ステータスPublished - 2015 3 25

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「The geometry of loop spaces I: H<sup>s</sup>-Riemannian metrics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル