The eigen-distribution of weighted game trees

Shohei Okisaka, Weiguang Peng, Wenjuan Li, Kazuyuki Tanaka

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper is devoted to the ongoing study on the equilibrium points of AND-OR trees. Liu and Tanaka (2007, 2007a) characterized the eigen-distributions that achieve the distributional complexity, and among others, they proved the uniqueness of eigen-distribution for a uniform binary tree. Later, Suzuki and Nakamura (2012) showed that the uniqueness fails if only directional algorithms are allowed. Peng et al. (2016) extended the studies on eigen-distributions to balanced multi-branching trees of height 2. But, it remains open whether the uniqueness still holds or not for general multi-branching trees. To this end, we introduce the weighted trees, namely, trees with weighted cost depending on the value of a leaf. Using such models, we prove that for balanced multi-branching trees, the uniqueness of eigen-distribution holds w.r.t. all deterministic algorithms, but fails w.r.t. only directional algorithms.

本文言語English
ホスト出版物のタイトルCombinatorial Optimization and Applications - 11th International Conference, COCOA 2017, Proceedings
編集者Meng Han, Hongwei Du, Xiaofeng Gao
出版社Springer Verlag
ページ286-297
ページ数12
ISBN(印刷版)9783319711492
DOI
出版ステータスPublished - 2017
イベント11th International Conference on Combinatorial Optimization and Applications, COCOA 2017 - Shanghai, China
継続期間: 2017 12 162017 12 18

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10627 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other11th International Conference on Combinatorial Optimization and Applications, COCOA 2017
国/地域China
CityShanghai
Period17/12/1617/12/18

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「The eigen-distribution of weighted game trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル