The Double Queen Dido’s Problem

Lorenzo Cavallina, Antoine Henrot, Shigeru Sakaguchi

研究成果: Article査読


This paper deals with a variation of the classical isoperimetric problem in dimension N≥ 2 for a two-phase piecewise constant density whose discontinuity interface is a given hyperplane. We introduce a weighted perimeter functional with three different weights, one for the hyperplane and one for each of the two open half-spaces in which RN gets partitioned. We then consider the problem of characterizing the sets Ω that minimize this weighted perimeter functional under the additional constraint that the volumes of the portions of Ω in the two half-spaces are given. It is shown that the problem admits two kinds of minimizers, which will be called type I and type II, respectively. These minimizers are made of the union of two spherical domes whose angle of incidence satisfies some kind of “Snell’s law”. Finally, we provide a complete classification of the minimizers depending on the various parameters of the problem.

ジャーナルJournal of Geometric Analysis
出版ステータスPublished - 2021 8月

ASJC Scopus subject areas

  • 幾何学とトポロジー


「The Double Queen Dido’s Problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。