The coloring reconfiguration problem on specific graph classes

Tatsuhiko Hatanaka, Takehiro Ito, Xiao Zhou

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We study the problem of transforming one (vertex) ccoloring of a graph into another one by changing only one vertex color assignment at a time, while at all times maintaining a c-coloring, where c denotes the number of colors. This decision problem is known to be PSPACE-complete even for bipartite graphs and any fixed constant c ≥ 4. In this paper, we study the problem from the viewpoint of graph classes. We first show that the problem remains PSPACE-complete for chordal graphs even if c is a fixed constant. We then demonstrate that, even when c is a part of input, the problem is solvable in polynomial time for several graph classes, such as k-trees with any integer k ≥ 1, split graphs, and trivially perfect graphs.

本文言語English
ページ(範囲)423-429
ページ数7
ジャーナルIEICE Transactions on Information and Systems
E102D
3
DOI
出版ステータスPublished - 2019 3 1

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「The coloring reconfiguration problem on specific graph classes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル