The Bulk-Edge Correspondence for the Quantum Hall Effect in Kasparov Theory

Chris Bourne, Alan L. Carey, Adam Rennie

研究成果: Article査読

19 被引用数 (Scopus)

抄録

We prove the bulk-edge correspondence in K-theory for the quantum Hall effect by constructing an unbounded Kasparov module from a short exact sequence that links the bulk and boundary algebras. This approach allows us to represent bulk topological invariants explicitly as a Kasparov product of boundary invariants with the extension class linking the algebras. This paper focuses on the example of the discrete integer quantum Hall effect, though our general method potentially has much wider applications.

本文言語English
ページ(範囲)1253-1273
ページ数21
ジャーナルLetters in Mathematical Physics
105
9
DOI
出版ステータスPublished - 2015 9 6
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「The Bulk-Edge Correspondence for the Quantum Hall Effect in Kasparov Theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル