Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome article

Norifumi Shioda, Yasushi Yabuki, Kouya Yamaguchi, Misaki Onozato, Yue Li, Kenji Kurosawa, Hideyuki Tanabe, Nobuhiko Okamoto, Takumi Era, Hiroshi Sugiyama, Takahito Wada, Kohji Fukunaga

研究成果: Article査読

42 被引用数 (Scopus)

抄録

Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome is caused by mutations in ATRX, which encodes a chromatin-remodeling protein. Genome-wide analyses in mouse and human cells indicate that ATRX tends to bind to G-rich sequences with a high potential to form G-quadruplexes. Here, we report that Atrx mutation induces aberrant upregulation of Xlr3b expression in the mouse brain, an outcome associated with neuronal pathogenesis displayed by ATR-X model mice. We show that ATRX normally binds to G-quadruplexes in CpG islands of the imprinted Xlr3b gene, regulating its expression by recruiting DNA methyltransferases. Xlr3b binds to dendritic mRNAs, and its overexpression inhibits dendritic transport of the mRNA encoding CaMKII-α, promoting synaptic dysfunction. Notably, treatment with 5-ALA, which is converted into G-quadruplex-binding metabolites, reduces RNA polymerase II recruitment and represses Xlr3b transcription in ATR-X model mice. 5-ALA treatment also rescues decreased synaptic plasticity and cognitive deficits seen in ATR-X model mice. Our findings suggest a potential therapeutic strategy to target G-quadruplexes and decrease cognitive impairment associated with ATR-X syndrome.

本文言語English
ページ(範囲)802-813
ページ数12
ジャーナルNature Medicine
24
6
DOI
出版ステータスPublished - 2018 6月 1

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)

フィンガープリント

「Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome article」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル