Tandem Equipment Arranged Architecture with Exhaust Heat Reuse System for Software-Defined Data Center Infrastructure

Yoshiaki Taniguchi, Koji Suganuma, Takaaki Deguchi, Go Hasegawa, Yutaka Nakamura, Norimichi Ukita, Naoki Aizawa, Katsuhiko Shibata, Kazuhiro Matsuda, Morito Matsuoka

研究成果: Article査読

9 被引用数 (Scopus)

抄録

In this paper, we propose a novel energy-efficient architecture for software-defined data center infrastructures. In our proposed data center architecture, we include an exhaust heat reuse system that utilizes higherature exhaust heat from servers in conditioning humidity and air temperature of office space near the data center. To obtain higherature exhaust heat, equipment such as server racks and air conditioners are deployed in tandem so that the aisles are divided into three types: cold, hot, and super-hot. In this paper, to investigate the fundamental characteristics of our proposed data center architecture, we consider various types of data center models and conduct numerical simulations that use results obtained by experiments at an actual data center. Through simulation, we show that the total power consumption by a data center with our proposed architecture is 27 percent lower than that by data center with a conventional architecture. In addition, it is also shown that the proposed tandem equipment arrangement is suitable for obtaining higherature exhaust heat and decreasing the total power consumption significantly under a wider range of conditions than in the conventional equipment arrangement.

本文言語English
ページ(範囲)182-192
ページ数11
ジャーナルIEEE Transactions on Cloud Computing
5
2
DOI
出版ステータスPublished - 2017
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 情報システム
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Tandem Equipment Arranged Architecture with Exhaust Heat Reuse System for Software-Defined Data Center Infrastructure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル