抄録
It is accepted that cerium doping is a great way to stabilize the structure of metallic oxidesand improve the electrochemical performance of lithium (Li)-ion batteries (LIBs). Using a simple hydrothermal method, we doped Ce into tin-based oxides and synthesized Ce-doped SnO2@Ti3C2 nanocomposites with Ti3C2-MXene as a framework. The as-prepared Ce-doped SnO2@Ti3C2 nanocomposites show higher surface area and lower Li+ diffusion barrier, and the galvanostatic charge/discharge cycle stability is better than that of SnO2@Ti3C2. Additionally, the nanocomposites exhibit excellent initial discharge capacity (1482.6 mAh g-1) at 100 mA g-1 and a remarkable cycle rate performance. After 150 cycles, the achieved discharge capacity remained at 310.8 mAh g-1. This study provides a new method of using two-dimensional (2D) layered materials and rare earth elements as lithium-ion storage materials.
本文言語 | English |
---|---|
論文番号 | 2151003 |
ジャーナル | Functional Materials Letters |
巻 | 14 |
号 | 1 |
DOI | |
出版ステータス | Published - 2021 1月 |
ASJC Scopus subject areas
- 材料科学(全般)