抄録
According to both the first principle and materials chemistry, a method for fabricating [(Ca1-xSrx)2-2y](Ti 2-2yLi2y)Si2yO6-y ceramic was investigated. It was considered that the sintering was promoted by self-accelerated diffusion due to the formation of point defects caused by doping with Li2Si2O5. Consequently, a concept of non-stoichiometrically activated sintering, which was enhanced by point defects without the help of a grain boundary phase, was systematically studied in the Ca1-xSrxTiO3-Li2Si 2O5 system. The mechanical and dielectric properties of [(Ca1-xSrx)2-2y](Ti2-2yLi 2y)Si2yO6-y were greatly enhanced by adding Li2Si2O5. To improve CO2 decomposition activity, [(Ca1-xSrx)2-2y] (Ti2-2yLi2y)Si2yO6-y, which possesses both high permittivity and high dielectric strength was used as a dielectric barrier to decompose CO2 by dielectric barrier discharges (DBDs) plasma without using any catalyst and auxiliary substance. It successfully generated DBDs plasma and the CO2 conversion was much higher than that using an alumina or a silica glass barrier which was widely used as the dielectric barrier in previous studies.
本文言語 | English |
---|---|
ページ(範囲) | 3209-3214 |
ページ数 | 6 |
ジャーナル | International Journal of Modern Physics B |
巻 | 24 |
号 | 15-16 |
DOI | |
出版ステータス | Published - 2010 6月 30 |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 凝縮系物理学