Synergistic effects of high energy helium irradiation and damage introduction at high temperature on hydrogen isotope retention in plasma facing materials

F. Sun, M. Nakata, S. E. Lee, M. Zhao, T. Wada, S. Yamazaki, A. Koike, S. Kondo, T. Hinoki, M. Hara, Y. Oya

研究成果: Article査読

9 被引用数 (Scopus)

抄録

In this study, energetic helium (He) ion irradiation was performed to obtain bulk He distribution in tungsten (W) materials, concurrent with damage introduction at high temperature. Then, deuterium (D) implantation and thermal desorption spectrometry were performed to evaluate D retention. At the same time, the surface tritium (T) concentration and depth distribution were evaluated by imaging plate (IP) and β-ray induced X-ray spectroscopy (BIXS) measurements after mixed D-T gas exposure. Numerical simulations were applied to evaluate changes in binding energies, diffusion depths, and trapping sites under different irradiation conditions. The results showed that weak trapping sites with higher concentration, such as vacancies, were produced during only energetic He+ irradiation events, leading to enhancement of D retention. Fe3+-He+ simultaneous irradiation promoted the formation of HexVy complexes, which reduced the concentration of vacancy trapping sites and changed the stress field around defects, leading to the suppression of D trapping behavior. From the reduced effects of D retention caused by HexVy complexes at higher temperatures, the results suggested that defect recovery was the dominant mechanism. With increasing damage level at higher temperatures, more weak trapping sites, such as dislocations and vacancies sites, were produced, leading to a more dominant influence on D retention than HexVy complex effects. It was also found that HexVy complexes prevented D diffusion to the bulk and that simulation results showed that the damage level had little impact on D diffusion depth.

本文言語English
論文番号152122
ジャーナルJournal of Nuclear Materials
533
DOI
出版ステータスPublished - 2020 5月

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 材料科学(全般)
  • 原子力エネルギーおよび原子力工学

フィンガープリント

「Synergistic effects of high energy helium irradiation and damage introduction at high temperature on hydrogen isotope retention in plasma facing materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル