Syn-eruptive breakdown of pyrrhotite: a record of magma fragmentation, air entrainment, and oxidation

Keiko Matsumoto, Michihiko Nakamura

研究成果: Article査読

7 被引用数 (Scopus)

抄録

Air entrainment in fragmented magmas controls the dynamics of volcanic eruptions. Pyroclast oxidation kinetics may be applied to quantify the degree of magma–air interaction. Pyrrhotite (Po) in volcanic rocks is often oxidized to form magnetite (Mt) and hematite (Hm), and its reaction mechanisms are well constrained. To test utilizing Po oxidation as a marker for magma–air interactions, we compared the occurrence of Po oxidation products from three different eruption styles during the Sakurajima 1914–1915 eruption. Pumices from the Plinian eruption include columnar-type Fe oxides (Mt with subordinate width of Hm) often accompanied by relict Po. This columnar type is also found in clastogenic lava, where it is almost completely oxidized to Hm. The effusive lava contains framboidal aggregates of subhedral to anhedral Mt crystals without Hm. The formation mechanisms of columnar and framboidal Fe oxides were estimated. The columnar type Fe oxides were formed syn-eruptively through gaseous reactions, as opposed to the melt in a magma chamber, as demonstrated by the Ti-free nature of the columnar Mt and its synchronous oxidation to Hm. By contrast, the framboidal type was formed in a melt with decreasing fS2. The calculation of Hm growth in a conductively cooling pumice clast constrains the surface temperature of pumice in the eruption column. The paragenesis and oxidation degree of Po and Fe oxides are consistent with the eruption processes in terms of magma fragmentation, air entrainment, and welding, and can, therefore, be a responsive marker for the magma–air interaction.

本文言語English
論文番号83
ジャーナルContributions to Mineralogy and Petrology
172
10
DOI
出版ステータスPublished - 2017 10 1

ASJC Scopus subject areas

  • 地球物理学
  • 地球化学および岩石学

フィンガープリント

「Syn-eruptive breakdown of pyrrhotite: a record of magma fragmentation, air entrainment, and oxidation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル