Symmetry-driven phase transformations in single-wall carbon-nanotube bundles under hydrostatic pressure

Marcel H.F. Sluiter, Vijay Kumar, Yoshiyuki Kawazoe

研究成果: Article査読

抄録

Ab initio calculations on (10,10) and (12,12) single-wall carbon-nanotube bundles show that the nature of the phase transformation under hydrostatic pressure is determined by the symmetry of the nanotubes. Bundles of (10,10) nanotubes that are incommensurate with the hexagonal lattice, have small deviations from hexagonal symmetry of the lattice even at zero pressure. A transition to monoclinic structure is obtained at about 1 GPa within the generalized gradient approximation such that the nanotubes transform to an oval shape. However, in the local-density approximation the monoclinic phase is retained even at zero pressure once the transformation has occurred. Bundles of (12,12) nanotubes are commensurate with the hexagonal symmetry of the lattice and show no transition even up to 6 GPa pressure except for a polygonization of the initially cylindrical nanotubes into a hexagonal shape. These results would resolve the contradictory conclusions obtained from experiments.

本文言語English
ページ(範囲)1-4
ページ数4
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
65
16
DOI
出版ステータスPublished - 2002 1 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

フィンガープリント 「Symmetry-driven phase transformations in single-wall carbon-nanotube bundles under hydrostatic pressure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル