Symmetry, complexity and multicritical point of the two-dimensional spin glass

Jean Marie Maillard, Koji Nemoto, Hidetoshi Nishimori

研究成果: Article査読

35 被引用数 (Scopus)

抄録

We analyse models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.

本文言語English
ページ(範囲)9799-9825
ページ数27
ジャーナルJournal of Physics A: Mathematical and General
36
38
DOI
出版ステータスPublished - 2003 9 26

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Symmetry, complexity and multicritical point of the two-dimensional spin glass」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル