Symmetric-conservative metric evaluations for higher-order finite difference scheme with the GCL identities on three-dimensional moving and deforming mesh

Y. Abe, N. Iizuka, T. Nonomura, K. Fujii

研究成果: Paper査読

9 被引用数 (Scopus)

抄録

New conservative forms are introduced for time metrics and the Jacobian, which satisfy the geometric conservation law (:GCL) identity even when higher-order spatial discretization is employed for the moving and deforming meshes. The conservative quantities are ensured to keep constant for three-dimensional moving and deforming meshes with use of these new forms for the computation of the uniform flow. In addition, one of the new forms has spatial symmetry property, and some tests indicate the significance of the spatial symmetry in the expression of time metrics and the Jacobian.

本文言語English
出版ステータスPublished - 2012
外部発表はい
イベント7th International Conference on Computational Fluid Dynamics, ICCFD 2012 - Big Island, United States
継続期間: 2012 7 92012 7 13

Conference

Conference7th International Conference on Computational Fluid Dynamics, ICCFD 2012
国/地域United States
CityBig Island
Period12/7/912/7/13

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 航空宇宙工学
  • 計算力学
  • 機械工学
  • 材料力学
  • 凝縮系物理学

フィンガープリント

「Symmetric-conservative metric evaluations for higher-order finite difference scheme with the GCL identities on three-dimensional moving and deforming mesh」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル