Susceptibility of the Ising model on the scale-free network with a Cayley tree-like structure

Takehisa Hasegawa, Koji Nemoto

研究成果: Article査読

11 被引用数 (Scopus)

抄録

We derive the exact expression for the zero-field susceptibility of each spin of the Ising model on the scale-free (SF) network having the degree distribution P (k) ∝ k- γ with the Cayley tree-like structure. The system shows that: (i) the zero-field susceptibility of a spin in the interior part diverges below the transition temperature of the SF network with the Bethe lattice-like structure Tc for γ > 3, while it diverges at any finite temperature for γ ≤ 3, and (ii) the surface part diverges below the divergence temperature of the SF network with the Cayley tree-like structure Ts for γ > 3, while it diverges at any finite temperature for γ ≤ 3.

本文言語English
ページ(範囲)1404-1410
ページ数7
ジャーナルPhysica A: Statistical Mechanics and its Applications
387
5-6
DOI
出版ステータスPublished - 2008 2月 15

ASJC Scopus subject areas

  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Susceptibility of the Ising model on the scale-free network with a Cayley tree-like structure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル