Study of solidification pathway of a MoSiBTiC alloy by optical thermal analysis and in-situ observation with electromagnetic levitation

Hiroyuki Fukuyama, Ryogo Sawada, Haruki Nakashima, Makoto Ohtsuka, Kyosuke Yoshimi

研究成果: Article査読

13 被引用数 (Scopus)

抄録

MoSiBTiC alloys are promising candidates for next-generation ultrahigh-temperature materials. However, the phase diagram of these alloys has been unknown. We have developed an ultrahigh-temperature thermal analyser based on blackbody radiation that can be used to analyse the melting and solidification of the alloy 67.5Mo–5Si–10B–8.75Ti–8.75 C (mol%). Furthermore, electromagnetic levitation (EML) was used for in-situ observation of solidification and microstructural study of the alloy. On the basis of the results, the following solidification pathway is proposed: Mo solid solution (Moss) begins to crystallize out as a primary phase at 1955 °C (2228 K) from a liquid state, which is followed by a (Moss+TiC) eutectic reaction starting at 1900 °C (2173 K). Molybdenum boride (Mo2B) phase precipitates from the liquid after the eutectic reaction; however, the Mo2B phase may react with the remaining liquid to form Moss and Mo5SiB2 (T2) as solidification proceeds. In addition, T2 also precipitates as a single phase from the liquid. The remaining liquid reaches the (Moss + T2 + TiC) ternary eutectic point at 1880 °C (2153 K), and the (Moss + T2 + Mo2C) eutectic reaction finally occurs at 1720 °C (1993 K). This completes the solidification of the MoSiBTiC alloy.

本文言語English
論文番号15049
ジャーナルScientific reports
9
1
DOI
出版ステータスPublished - 2019 12月 1

ASJC Scopus subject areas

  • 一般

フィンガープリント

「Study of solidification pathway of a MoSiBTiC alloy by optical thermal analysis and in-situ observation with electromagnetic levitation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル