Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory

Y. J. Duan, J. C. Qiao, T. Wada, H. Kato, E. Pineda, D. Crespo, Yun Jiang Wang

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The viscoelastic properties of Pd20Pt20Cu20Ni20P20 high-entropy metallic glass were probed by dynamic mechanical spectroscopy and stress relaxation. The experimental evolution of stress can be characterized by the empirical Kohlrausch-Williams-Watts function during the tensile stress relaxation measurement. We develop a linear relaxation model able to describe the whole process of stress relaxation in a wide range of temperatures. The linear relaxation model takes into account the microstructural heterogeneity of the glass, and thus its dynamical heterogeneity, so that the thermal effect and stress-driven process are physically decoupled. The activation energy spectra at various temperatures reveal the changes of the deformation units during stress relaxation, which is the result of the interplay between stress and temperature. This study decomposes the widespread hierarchical dynamics due to structural heterogeneity which accommodates the viscoelastic deformation of the high-entropy metallic glasses.

本文言語English
論文番号103959
ジャーナルMechanics of Materials
160
DOI
出版ステータスPublished - 2021 9月

ASJC Scopus subject areas

  • 材料科学(全般)
  • 器械工学
  • 材料力学

フィンガープリント

「Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル