Stochastic modeling of nucleation and growth in a thin layer between two interfaces

Takashi Tagami, Shun Ichiro Tanaka

研究成果: Article査読

19 被引用数 (Scopus)

抄録

A stochastic modeling method is presented for the analysis of nucleation and growth in a thin layer between two interfaces. In this layer, nucleation occurs randomly and growth stops at the interfaces after instantaneous growth. This halting of the growth causes non-random impingement because phantom crystallites in the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model shrink to an effective size. This stochastic model successfully deals with effective size using a factor γ which accounts for the overlap between a phantom crystallite and a crystallite. This leads to a phenomenological equation for non-random impingement: dX(t)/dVex = [1 - X(t)]i, where X(t) is the transformed fraction and Vex is the KJMA extended volume fraction. It is shown that the exponent is clearly expressed as i = 2 - γ. An analytical solution of the transformed fraction agrees very well with the numerical simulations.

本文言語English
ページ(範囲)3341-3347
ページ数7
ジャーナルActa Materialia
45
8
DOI
出版ステータスPublished - 1997 8月
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • ポリマーおよびプラスチック
  • 金属および合金

フィンガープリント

「Stochastic modeling of nucleation and growth in a thin layer between two interfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル