State-space reduction and equivalence class sampling for a molecular self-assembly model

Daniel M. Packwood, Patrick Han, Taro Hitosugi

    研究成果: Article査読

    3 被引用数 (Scopus)

    抄録

    Direct simulation of a model with a large state space will generate enormous volumes of data, much of which is not relevant to the questions under study. In this paper, we consider a molecular self-assembly model as a typical example of a large state-space model, and present a method for selectively retrieving ‘target information’ from this model. This method partitions the state space into equivalence classes, as identified by an appropriate equivalence relation. The set of equivalence classes H, which serves as a reduced state space, contains none of the superfluous information of the original model. After construction and characterization of aMarkov chain with state space H, the target information is efficiently retrieved via Markov chain Monte Carlo sampling. This approach represents a new breed of simulation techniques which are highly optimized for studying molecular self-assembly and, moreover, serves as a valuable guideline for analysis of other large state-space models.

    本文言語English
    論文番号18
    ページ(範囲)20
    ページ数1
    ジャーナルRoyal Society Open Science
    3
    7
    DOI
    出版ステータスPublished - 2016 7 20

    ASJC Scopus subject areas

    • General

    フィンガープリント 「State-space reduction and equivalence class sampling for a molecular self-assembly model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル