Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders

Yoshiki Takai, Tatsuro Misu, Hiroyoshi Suzuki, Toshiyuki Takahashi, Hiromi Okada, Shinya Tanaka, Kenji Okita, Shunichi Sasou, Mika Watanabe, Chihiro Namatame, Yuki Matsumoto, Hirohiko Ono, Kimihiko Kaneko, Shuhei Nishiyama, Hiroshi Kuroda, Ichiro Nakashima, Hans Lassmann, Kazuo Fujihara, Yasuto Itoyama, Masashi Aoki

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Aquaporin 4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) is an autoimmune astrocytopathic disease pathologically characterized by the massive destruction and regeneration of astrocytes with diverse types of tissue injury with or without complement deposition. However, it is unknown whether this diversity is derived from differences in pathological processes or temporal changes. Furthermore, unlike for the demyelinating lesions in multiple sclerosis, there has been no staging of astrocytopathy in AQP4-IgG+NMOSD based on astrocyte morphology. Therefore, we classified astrocytopathy of the disease by comparing the characteristic features, such as AQP4 loss, inflammatory cell infiltration, complement deposition and demyelination activity, with the clinical phase. We performed histopathological analyses in eight autopsied cases of AQP4-IgG+NMOSD. Cases comprised six females and two males, with a median age of 56.5 years (range, 46-71 years) and a median disease duration of 62.5 months (range, 0.6-252 months). Astrocytopathy in AQP4-IgG+NMOSD was classified into the following four stages defined by the astrocyte morphology and immunoreactivity for GFAP: (i) astrocyte lysis: extensive loss of astrocytes with fragmented and/or dust-like particles; (ii) progenitor recruitment: loss of astrocytes except small nucleated cells with GFAP-positive fibre-forming foot processes; (iii) protoplasmic gliosis: presence of star-shaped astrocytes with abundant GFAP-reactive cytoplasm; and (iv) fibrous gliosis: lesions composed of densely packed mature astrocytes. The astrocyte lysis and progenitor recruitment stages dominated in clinically acute cases (within 2 months after the last recurrence). Findings common to both stages were the loss of AQP4, a decreased number of oligodendrocytes, the selective loss of myelin-associated glycoprotein and active demyelination with phagocytic macrophages. The infiltration of polymorphonuclear cells and T cells (CD4-dominant) and the deposition of activated complement (C9neo), which reflects the membrane attack complex, a hallmark of acute NMOSD lesions, were selectively observed in the astrocyte lysis stage (98.4% in astrocyte lysis, 1.6% in progenitor recruitment, and 0% in protoplasmic gliosis and fibrous gliosis). Although most of the protoplasmic gliosis and fibrous gliosis lesions were accompanied by inactive demyelinated lesions with a low amount of inflammatory cell infiltration, the deposition of complement degradation product (C3d) was observed in all four stages, even in fibrous gliosis lesions, suggesting the past or chronic occurrence of complement activation, which is a useful finding to distinguish chronic lesions in NMOSD from those in multiple sclerosis. Our staging of astrocytopathy is expected to be useful for understanding the unique temporal pathology of AQP4-IgG+NMOSD.

本文言語English
ページ(範囲)2401-2415
ページ数15
ジャーナルBrain
144
8
DOI
出版ステータスPublished - 2021 8 1

ASJC Scopus subject areas

  • 臨床神経学

フィンガープリント

「Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル