Stable cohomotopy Seiberg-Witten invariants of connected sums of four-manifolds with positive first Betti number II: Applications

Masashi Ishida, Hirofumi Sasahira

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This is a sequel to our article [16] where a generalization of a non-vanishing theorem for stable cohomotopy Seiberg-Witten invariants is proved. The main purpose of the current article is to give various applications of the non-vanishing theorem to the differential geometry and topology of 4-manifolds, including existence of exotic smooth structures, smooth connected sum decompositions of 4-manifolds and computations of Perelman’s ?¯ invariant.

本文言語English
ページ(範囲)373-393
ページ数21
ジャーナルCommunications in Analysis and Geometry
25
2
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 分析
  • 統計学および確率
  • 幾何学とトポロジー
  • 統計学、確率および不確実性

フィンガープリント

「Stable cohomotopy Seiberg-Witten invariants of connected sums of four-manifolds with positive first Betti number II: Applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル