Spin-lattice decoupling in a triangular-lattice quantum spin liquid

Takayuki Isono, Shiori Sugiura, Taichi Terashima, Kazuya Miyagawa, Kazushi Kanoda, Shinya Uji

研究成果: Article査読

14 被引用数 (Scopus)


A quantum spin liquid (QSL) is an exotic state of matter in condensed-matter systems, where the electron spins are strongly correlated, but conventional magnetic orders are suppressed down to zero temperature because of strong quantum fluctuations. One of the most prominent features of a QSL is the presence of fractionalized spin excitations, called spinons. Despite extensive studies, the nature of the spinons is still highly controversial. Here we report magnetocaloric-effect measurements on an organic spin-1/2 triangular-lattice antiferromagnet, showing that electron spins are decoupled from a lattice in a QSL state. The decoupling phenomena support the gapless nature of spin excitations. We further find that as a magnetic field is applied away from a quantum critical point, the number of spin states that interact with lattice vibrations is strongly reduced, leading to weak spin-lattice coupling. The results are compared with a model of a strongly correlated QSL near a quantum critical point.

ジャーナルNature communications
出版ステータスPublished - 2018 12月 1

ASJC Scopus subject areas

  • 化学 (全般)
  • 生化学、遺伝学、分子生物学(全般)
  • 物理学および天文学(全般)


「Spin-lattice decoupling in a triangular-lattice quantum spin liquid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。