Spatio-Temporal Analysis for Understanding the Traffic Demand after the 2016 Kumamoto Earthquake Using Mobile Usage Data

Junji Urata, Yasushi Sasaki, Takamasa Iryo

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

This paper focuses on the effect of natural disasters on the population density transition. Emergency management needs demand forecasting by understanding the major demands during a disaster event. Mobile phone traffic is useful for understanding the demands because the behavioral dataset from typical surveys for ordinary demand pattern is impractical. The aim of our spatio-temporal analysis is to identify the characteristics of the population density after a disaster. To deal with this problem, we apply the latest spatial statistic approach to the aggregated mobile phone data before and after a disaster. A regression analysis clarifies the effect of the damage based on the result obtained by this approach. Our case study analyzes the population density before and after the 2016 Kumamoto earthquake. We confirm that this approach can identify the main characteristics: commuting transitions during morning and recreation population on the weekend using the data before the earthquake. The results clearly highlight some interesting spatio-temporal patterns after the earthquake: the recovery process of daily life and time variation of the refugee population density.

本文言語English
ホスト出版物のタイトル2018 IEEE Intelligent Transportation Systems Conference, ITSC 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2496-2503
ページ数8
ISBN(電子版)9781728103235
DOI
出版ステータスPublished - 2018 12 7
外部発表はい
イベント21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018 - Maui, United States
継続期間: 2018 11 42018 11 7

出版物シリーズ

名前IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
2018-November

Conference

Conference21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018
国/地域United States
CityMaui
Period18/11/418/11/7

ASJC Scopus subject areas

  • 自動車工学
  • 機械工学
  • コンピュータ サイエンスの応用

フィンガープリント

「Spatio-Temporal Analysis for Understanding the Traffic Demand after the 2016 Kumamoto Earthquake Using Mobile Usage Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル