Some characterizations of parallel hyperplanes in multi-layered heat conductors

Shigeru Sakaguchi

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider the Cauchy problem for the heat diffusion equation in the whole space consisting of three layers with different constant conductivities, where initially the upper and middle layers have temperature 0 and the lower layer has temperature 1. Under some appropriate conditions, it is shown that, if either the interface between the lower layer and the middle layer is a stationary isothermic surface or there is a stationary isothermic surface in the middle layer near the lower layer, then the two interfaces must be parallel hyperplanes. Similar propositions hold true, either if a stationary isothermic surface is replaced by a surface with the constant flow property or if the Cauchy problem is replaced by an appropriate initial-boundary value problem.

本文言語English
ページ(範囲)185-210
ページ数26
ジャーナルJournal des Mathematiques Pures et Appliquees
140
DOI
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Some characterizations of parallel hyperplanes in multi-layered heat conductors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル