Solid-state bonding of alloy-designed Cu-Zn brass and steel associated with phase transformation by spark plasma sintering

Naoya Masahashi, Satoshi Semboshi, Kenichi Watanabe, Yuichi Higuchi, Hideki Yamagata, Yoshitomo Ishizaki

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Solid-state bonding between steel and a Cu alloy was studied to investigate fabrication of advanced bimetallic composites by using spark plasma sintering (SPS). In order to obtain proper bonding strength between the mating materials, Si and Al were alloyed to Cu-Zn brass to enhance interdiffusion with steel. The alloying elements diffused from the Cu alloy to steel, which transformed from the gamma to alpha phase during bonding. Owing to the phase stability of steel, the new columnar microstructure that evolved during the transformation across the joint interface showed high bonding strength between the mating alloys. The samples bonded without fracture, defects, or inhomogeneous deformation. Microstructural observations, elementary mapping, and mechanical testing demonstrated that the SPS technique and specific bonding parameters enhanced the interdiffusion between the metals. This novel method would be well suited to strengthen bonding between two dissimilar metals with different diffusion coefficients.

本文言語English
ページ(範囲)5801-5809
ページ数9
ジャーナルJournal of Materials Science
48
17
DOI
出版ステータスPublished - 2013 9 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 材料力学
  • 機械工学

フィンガープリント

「Solid-state bonding of alloy-designed Cu-Zn brass and steel associated with phase transformation by spark plasma sintering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル