SL(2, ℂ) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial

Sergei Gukov, Hitoshi Murakami

研究成果: Article査読

25 被引用数 (Scopus)

抄録

It has been proposed that the asymptotic behavior of the colored Jones polynomial is equal to the perturbative expansion of the Chern-Simons gauge theory with complex gauge group SL(2) on the hyperbolic knot complement. In this note we make the first step toward verifying this relation beyond the semi-classical approximation. This requires a careful understanding of some delicate issues, such as normalization of the colored Jones polynomial and the choice of polarization in Chern-Simons theory. Addressing these issues allows us to go beyond the volume conjecture and to verify some predictions for the behavior of the subleading terms in the asymptotic expansion of the colored Jones polynomial.

本文言語English
ページ(範囲)79-98
ページ数20
ジャーナルLetters in Mathematical Physics
86
2-3
DOI
出版ステータスPublished - 2008 12
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「SL(2, ℂ) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル