Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space

Masaki Kurokiba, Takayoshi Ogawa

研究成果: Letter査読

5 被引用数 (Scopus)

抄録

We consider the singular limit problem of the Cauchy problem to the Keller-Segel equation in the two dimensional critical space. It is shown that the solution to the Keller-Segel system in the scaling critical function space converges to the solution to the drift-diffusion system of parabolic-elliptic equations (the simplified Keller-Segel equation) in the critical space strongly as the relaxation time parameter τ→∞. For the proof, we show generalized maximal regularity for the heat equations and use it systematically with the sequence of embeddings between the interpolation spaces B˙q,σs(R2) and F˙q,σs(R2) for the proof of singular limit problem.

本文言語English
ページ(範囲)8959-8997
ページ数39
ジャーナルJournal of Differential Equations
269
10
DOI
出版ステータスPublished - 2020 11月 5

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル