Singular limit problem for the Keller–Segel system and drift–diffusion system in scaling critical spaces

Masaki Kurokiba, Takayoshi Ogawa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider a singular limit problem for the Cauchy problem of the Keller–Segel equation in a critical function space. We show that a solution to the Keller–Segel system in a scaling critical function space converges to a solution to the drift–diffusion system of parabolic–elliptic type (the simplified Keller–Segel model) in the critical space strongly as the relaxation time τ→ ∞. For the proof of singular limit problem, we employ generalized maximal regularity for the heat equation and use it systematically with the sequence of embeddings between the interpolation spaces B˙q,σs(Rn) and F˙q,σs(Rn).

本文言語English
ページ(範囲)421-457
ページ数37
ジャーナルJournal of Evolution Equations
20
2
DOI
出版ステータスPublished - 2020 6 1

ASJC Scopus subject areas

  • 数学(その他)

フィンガープリント

「Singular limit problem for the Keller–Segel system and drift–diffusion system in scaling critical spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル