Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier–Sobolev space

Tatsuya Matsui, Ryosuke Nakasato, Takayoshi Ogawa

研究成果: Article査読

抄録

We study the Cauchy problem of the incompressible damped wave type magnetohydrodynamic system in RN (N≥2). The purpose of this paper is to show the global well-posedness and a singular limit of the problem in Fourier–Sobolev spaces. For the proof of the results, we use the Lp-Lq type estimates for the fundamental solutions of the damped wave equation and end-point maximal regularity for the inhomogeneous heat equation in that space with a detailed estimate of difference between the symbol of the heat kernel and fundamental solution of the damped wave equation.

本文言語English
ページ(範囲)414-446
ページ数33
ジャーナルJournal of Differential Equations
271
DOI
出版ステータスPublished - 2021 1 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier–Sobolev space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル