Single-crystal growth, structure and luminescence properties of Cs2HfCl3Br3

Shohei Kodama, Shunsuke Kurosawa, Kotaro Fujii, Taito Murakami, Masatomo Yashima, Jan Pejchal, Robert Král, Martin Nikl, Akihiro Yamaji, Masao Yoshino, Satoshi Toyoda, Hiroki Sato, Yuji Ohashi, Kei Kamada, Yuui Yokota, Akira Yoshikawa

研究成果: Article査読

2 被引用数 (Scopus)


Single crystal of the mixed-halogen compound Cs2HfCl3Br3 was grown by the vertical Bridgman method, and we investigated its crystal structure and optical properties. Single-crystal X-ray diffraction and energy dispersive X-ray spectroscopy analyses indicated the chemical composition to be Cs2Hf(Cl0.578(6)Br0.422(6))6 (= Cs2HfCl3.47(4)Br2.53(4), approximately Cs2Hf(Cl0 58Br0.42)6) where the number in the parentheses denotes the estimated standard deviation in the last digit. Cs2Hf(Cl0.58Br0.42)6 was found to have a cubic Fm3‾m potassium hexachloroplatinate structure consisting of Cs+ cations and Hf(Cl0 . 58Br0.42)6 2− anions. The emission peak of Cs2HfCl3Br3 was red-shifted by Br substitution, and the photoluminescence decays of Cs2HfCl3Br3 were accelerated when compared to those of Cs2HfCl6. Cs2HfCl3Br3 had an emission peak at 450 nm under X-ray irradiation, while under UV-excitation, two photoluminescence emission peaks at 420 and 525 nm were observed. The decay profile of the 420-nm emission band had a single-exponential component with a decay time of 1.95 ± 0.01 μs under the 280-nm-excitation. On the other hand, 525-nm-emisison had two decay components of 0.28 ± 0.03 μs (11%) and 6.54 ± 0.03 μs (89%) under 305-nm-photons excitation.

ジャーナルOptical Materials
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 分光学
  • 物理化学および理論化学
  • 有機化学
  • 無機化学
  • 電子工学および電気工学


「Single-crystal growth, structure and luminescence properties of Cs2HfCl3Br3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。