Shortest reconfiguration of perfect matchings via alternating cycles

Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Yoshio Okamoto

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar.

本文言語English
ホスト出版物のタイトル27th Annual European Symposium on Algorithms, ESA 2019
編集者Michael A. Bender, Ola Svensson, Grzegorz Herman
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771245
DOI
出版ステータスPublished - 2019 9
イベント27th Annual European Symposium on Algorithms, ESA 2019 - Munich/Garching, Germany
継続期間: 2019 9 92019 9 11

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
144
ISSN(印刷版)1868-8969

Conference

Conference27th Annual European Symposium on Algorithms, ESA 2019
国/地域Germany
CityMunich/Garching
Period19/9/919/9/11

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Shortest reconfiguration of perfect matchings via alternating cycles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル